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Reed-Solomon codes have recently been suggested for use as an “outer” code on
NASA projects, since these codes perform very well on channels prone to burst errors.
This article discusses another feature of Reed-Solomon codes, viz, the way in which they

can be used to acquire sync.

I. Introduction

A concatenated coding scheme, consisting of an inner
(7,1/2) convolutional code and an outer J=8, E=16
Reed-Solomon code, will be used for the Galileo mission and
the International Solar Polar Mission, and is part of the
‘multimission packet telemetry guidelines currently being
proposed, This report examines the synchronization capabil-
ities of Reed-Solomon codes when an appropriate coset of the
code is used instead of the code itself. In this case an E-error
correcting Reed-Solomon code is transformed into a new code
capable of determining that there are m symbols out of sync,
if e symbol errors occurred, whenever m + e <E. In the event
that m =0, ie., the word is in sync, then the decoder will
correct any pattern of £ ~ 1 or fewer symbol errors.

The key idea to achieving synchronization is to use a coset
of the code instead of the code itself. (A coset is obtained by
adding the same vector to every code word.) From an
error-correcting point of view, the coset is equivalent to the
code itself. In addition, synchronization can sometimes be
achieved as well. The algorithm to be presented differs from
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usual coding algorithms in that the information is encoded
into one code, but decoded in a larger (different) code. The
larger code contains the coset of the smaller code.

Il. Synchronization Algorithm

Suppose that C; and C, are Reed-Solomon codes of length
n whose symbols lie in GF (g). Let

2E-1
C, = (g, (x)), where g, (x) = IT G- d),andC, = (g,(x),
i=2 '
where
2E-1 _
5 = Il &-o),
i=1
*

and o is a primitive nt® root of unity. (Observe that C,CcC)
Then the following algorithm will insure that any transmitted




code word of €, will be resynchronized if it is received out of

sync by m symbols, and e errors were made, provided that
m+e<E.If m=0, then any combination of £~ 1 or fewer
symbol errors will be corrected.

Algorithm :
Encoder
(1) Encode the information into w(x) €C,.

(2) Transmit w(x) +g,(x) (a coset).

Decoder

(1) Receive #(x), which has e errors and is out of sync by m
symbols.

(2) Compute r(x) - g, (x).
(3) Determine m.
(4) If m=0, then correct r(x) using the C, - decoder.

Otherwise, shift r(x) ahead by n-m symbols to
acquire sync.

lll. Verification of Algorithm Correctness

Suppose that w, (x), w,(x) € C, are codewords and that
wl(x) + g, (x), wz(x) + g,(x) are transmitted over a noisy
channel. Assume also that the decoder does not know where a
codeword begins, and that it begins to decode m symbols out
of sync. This can be represented by the following diagram.

w, (%) w, ()
Codewords of C2
w, (x) +.g,(x) w,(x) +g,(x)

Add g, (x)

r(x)

— i ———

Overlap word

Let x"~™ P _(x) be the prefix of w,(x) appearing in
r(x), where deg P, (x) <M. Also let qn*m(x) be the suffix of
w, (x) appearing in r(x), where deg g, (x) < n. Finally,
denote x"~™ y_(x) as the prefix of w, (x) preceding #(x). Then
the following diagram is useful.

w, (x) W, (%)
X"y (%) 4, ) X" (x)
| Codewords of c,
w, (x) +g, (x) w, (x) +g, (x)
My () 4, ()48, | P ()]
| T add g,(x)

" [q,_,,00+g, )] +p, ()

Error-free
overlap
word

PG = X" [4,_,,0) +8,0)] +1,() + EG)

Overlap word with -
error pattern &(x)

At stage 2, the decoder attempts to strip g,(x) from the
received word by subtraction. This will succeed if the received
word is in sync, i.e., if m = 0. Otherwise the received word is
further perturbed from the originally transmitted word. This is
indicated below.

rx) - g,(x) = (™ - g, (x) +x™q,_ () +P, () + E()

Subtract g, (x)

Since w, (x), g, ()EC,, (" - 1)g, (x) +x"w, () €C,.
Thus r(x) and r(x) ~ [(x™ - 1)g,(x) + x™w, (x)] have the

same error pattern, €(x), as far as the o — decoder is
concerned. But,

rG) - [ - g, () +x™w ()] -

Mg () +P, (%) XMw, (x) + Ex)

X" 4, @)= w @] +P (x)+ Ex)

XXy, ()] +P, (x) + E(x)

[P, (x)- v, (x)] + E(x), since x" =1,
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Now P,,(x) and v,,(x) both have degree <m; hence P,,(x) -
v,,(x) has at most 7 nonzero terms. If §(x) has at most £~ m
nonzero terms, ie., if at most E- m transmission errors
occurred, then the C; — decoder will determine &(x)= P,,,(x)
- ¥,,(x) +&(x) as the error polynomial. Of course, what is
desired is to compute &(x) and m separately. Note that if
m=0, then &(x) = &(x), and r(x) - E(x) is the desired
codeword. Otherwise,

r@)- 6@ = ¥, _,,®) +g,@] +v,,()
= x"q,_,, () +v,, () + x"g ()
= X (4@ + X", ()] +x™g (%)
= X" [w, () +g,(9)].
Thus
re) - E@) = o [w (@) +g,()]

= o™ g, (0),since w, €C,.

Since g, (x) is a fixed polynomial, m can be easily determined
by a table look-up. Once m is known, then a shift of n-m
symbols will reacquire sunc.

IV. Example

Let C, be the Reed-Solomon code, RS(255,225), generated
by

31 i
g, =TI x-ob,
i=2

where a is a primitive 255th root of unity in GF(2%). Let C,
be the Reed-Solomon code, RS(255,224) generated by

31 _
g, =II @-).

i=1

The information is encoded in C,, and g, (x) is added to the
parity symbols. If r(x) is received out of sync by m symbols
with symbol errors, then m will be determined if m +e <16.
Moreover, if m = 0, then r(x) will be correctly decoded,
provided that 15 or fewer symbol errors occurred.

V. System Considerations

The (255,223) 16-error correcting Reed-Solomon code has
been given as a quasi-standard by various groups in NASA. If
one wants to be able to acquire sync using the Reed-Solomon
code alone, then additional system considerations are needed.

First, the information is encoded in one code, but decoded
in another. Second, to maintain the same information rate,
only 15 errors can be corrected; on the other hand, keeping
the same error-correcting capability forces the information
rate to drop. This memo alludes to using the former option,
since initial performance studies indicate that the (255,225)
15-error correcting code performs better than the (255,223)
16-error correcting code. Of course, what have to be estimated
are the expected time to acquire sync, the probability of false
sync, and the buffer requirements, assuming that the ratio of
the decoder’s speed to the data rate is some constant. This
work as well as estimating the performance comparison (dB)
of using this new Reed-Solomon scheme to acquire sync vs
using the (255,223) Reed-Solomon code and a fixed sync
pattern should be performed in the future.
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